Processos Matemáticos

A utilização da Matemática para expressar idéias ou para resolver problemas envolve, pelo menos, três fases:

1) a representação de determinados aspectos das coisas de forma abstrata;

2) a manipulação das abstrações através de regras de lógica para encontrar novas relações entre elas;

3) verificar se as novas relações dizem alguma coisa de útil acerca dos objetos originais.

O raciocínio matemático tem início freqüentemente com o processo de abstração – isto é, com a verificação da semelhança existente entre dois ou mais objetos ou eventos. Os aspectos que têm em comum, quer concretos, quer hipotéticos, podem ser representados por símbolos, como números, letras, outros sinais, diagramas, construções geométricas, ou mesmo palavras.

Este processo de abstração permite que os matemáticos se concentrem nalgumas características das coisas e alivia-os da necessidade de terem sempre em mente as outras características.

Feitas as abstrações e selecionadas as respectivas representações simbólicas, esses símbolos tornam-se objetos, que podem ser combinados e recombinados de várias maneiras, segundo regras definidas com precisão.

Os conhecimentos matemáticos acerca das relações abstratas têm vindo a aumentar desde há milhares de anos e continuam a expandir-se e, por vezes, revistos. Apesar de terem tido início na experiência prática de contar e medir, estes conhecimentos atravessaram muitos níveis de abstração e hoje dependem muito mais da lógica interna do que da demonstração mecânica.

Post a Comment

Your email is never published nor shared. Required fields are marked *

reverse phone lookupTattoo DesignsSEO